Decomposition of 2-Azidosulphonylbenzophenones. Unusual Rearrangement Products

By Rudolph A. Abramovitch* and Daniel P. Vanderpool

(Department of Chemistry, University of Alabama, University, Alabama 35486)

Summary Thermal decomposition of 2-azidosulphonylbenzophenones gives the 7-membered cyclisation products in addition to products in which nitrogen is bound to the ortho-position originally bearing the carbonyl group; ring chain tautomerism of the sulphonyl azides with 3-aryl-3azidobenzo[d][2,1]oxathioles followed by decomposition of the latter and 1,2-aryl shifts is proposed to explain formation of the rearranged products.

INTRAMOLECULAR cyclisation of sulphonylnitrenes has led to a variety of new heterocyclic ring systems.¹ We now report the decomposition of 2-azidosulphonylbenzophenones

a; $R^1 = R^2 = H$ **b**; $R^1 = H$, $R^2 = Me$

(8)

(7)

c; $R^1 = Me$, $R^2 = H$

which, in addition to the desired cyclisation products, leads to an unusual rearrangement in which the nitrene nitrogen gets bound to the aryl *ortho*-carbon atom originally bearing the carbonyl group.

SCHEME. ^a D. Y. Curtin and L. Miller, J. Amer. Chem. Soc., 1967, **89**, 637, discuss the related rearrangement of isophthalimide to phthalimide.

Thermolysis of the azide (1a),[†] in Freon 113 at 100 °C gave the dioxide (2a) $(3 \cdot 5\%)$,[‡] orthanilic acid (3a) (15%), the dioxides (4a) $(1\%)^2$ and (5a) (1%),³ and benzanilide (6a)(1%). Only one other example of the cyclisation of a sulphonylnitrene to give a seven-membered ring had been reported previously,¹ namely the formation of dibenzo-[b,f][1,4,5]oxathiazepine 5,5-dioxide. The azide (1a) (38%)was recovered. When the *para*-methyl compound (1b) was similarly decomposed, (2b) (5%), m.p. 235–236 °C, (3b)(35%), (4b) (2%), (5b) (3%), *p*-toluic acid (26%), and (6b) (2%) were isolated. The isomeric cyclisation product

† All new compounds gave correct analyses and spectral data (i.r., n.m.r., and mass) consistent with the proposed structures.

(9)

 $^{+}$ A yield of 7% was obtained when the thermolysis was carried out in chlorobenzene at 150 °C. The N-methyl derivative, m.p. 158—159 °C, was identical with a sample prepared from $o-HO_2CC_6H_4SO_2N(Me)Ph$ by treatment with PCl₅ in CS₂, followed by AlCl₃ in nitrobenzene at 50 °C.

(7) was not detected.§ When the thermolysis was carried out at 140 °C for 10 h, (8b) (33%), m.p. 144-146 °C, was isolated [v 1633 (C=N), 1360, and 1190 (SO₂) cm⁻¹] which gave (3a) and ethyl p-methylbenzoate on treatment with ethanol. Decomposition of (1c) in Freon 113 at 140 °C gave (2c) (6%), m.p. 203-204 °C, (6c) (1%), and a compound [presumably (8c), m.p. 138-145 °C] which, on recrystallisation, gave $(9c), \text{ m.p. } 183\ ^{\circ}\text{C},$ identical with an authentic sample prepared by benzoylation of sodium 2-amino-4toluenesulphonate. Treatment of (9c) with ethanol gave (**3c**).

Compounds (4) probably arise by the known⁴ dehydration of the hydrogen-abstraction product. To account for the array of non-sulphonylnitrene derived products it is suggested that ring-chain tautomerization⁵ of some undecomposed (1) to 3-aryl-3-azidobenzo[d][2,1]oxathioles (10)

The oxathiazine (8b) is thermally stable in chlorobenzene at 140 °C. The benzanilides are, therefore, probably formed by desulphonation of (9).⁶

We thank the National Institute of Neurological Diseases and Stroke and the National Science Foundation for support.

(Received, 27th September 1976; Com. 1094.)

§ An authentic sample of the N-ethyl derivative of (8), m.p. 154-155 °C, was prepared from $o-HO_2CC_6H_4SO_2NEt(C_6H_4Me-p)$ by treatment with PCl_s in CS₂ followed by heating with AlCl_s, and was found to be different from the N-ethyl derivative of (2b), m.p. 118—119 °C.

¹ R. A. Abramovitch, C. I. Azogu, and I. T. McMaster, J. Amer. Chem. Soc., 1969, 91, 1219; R. A. Abramovitch and R. G. Sutherland. Fortsch. Chem. Forsch., 1970, 16, 30; R. A. Abramovitch and W. D. Holcomb, Chem. Comm., 1969, 1298; J. Amer. Chem. Soc., 1975. **97**, 678.

² R. A. Abramovitch, B. Purtshert, E. M. Smith, P. C. Srinivasan, M. Humber, and G. M. Singer, J.C.S. Perkin I, 1974, 2589.

³ H. Watanabe, R. L. Gay, and C. R. Hauser, J. Org. Chem., 1968, 33, 900.
⁴ I. Remsen and A. P. Saunders, Amer. Chem. J., 1895, 17, 347.

⁵ Some other known examples of ring-chain tautomerism are: o-benzoylbenzamide \Rightarrow benzo[c]oxoline (M. Ahmed and J. M. Vernon, J.C.S. Perkin I, 1975, 2048) ; o-formylbenzoyl chloride ≓ 3-chlorophthalide (M. Renson, Bull. Šoc. Chim. belges, 1961, **70**, 77) ; o-formylbenzenesulphonyl chloride \rightleftharpoons 3-chlorobenzoxathiazoline (J. F. King, B. L. Huston, A. Hawson, and J. Komeny, Canad. J. Chem., 1971, 49, 943); o-formylbenzenesulphonic acid \rightleftharpoons 3-hydroxybenzoxathiole (K. A. Freeman and C. D. Ritchie, J. Assoc. Offic. Agric. Chemists, 1957, 40, 1108 (Chem. Abs., 1958, 52, 6067a); benzophenone-2-sulphonamides ≓ 3-hydroxy-3-phenyl-2,3-dihydrobenzisothiazole 1,1-dioxide (H. Watanabe, C.-L. Mao, I. T. Barnish, and C. R. Hauser, J. Org. Chem., 1969, 34, 919).

⁶ H. Suschitsky, J. Martin, and O. Meth-Cohn, J.C.S. Perkin I, 1974, 2451.